organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zuo-Liang Jing,* Yu Liu, Xin Chen and Yu Ming

College of Sciences, Tianjin University of Science and Technology, Tianjin 300222, People's Republic of China

Correspondence e-mail: jzl74@tust.edu.cn

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.002 Å R factor = 0.034 wR factor = 0.096 Data-to-parameter ratio = 11.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-(2,4-Dinitrophenyl)-*N*'-(4-methoxybenzyl-idene)hydrazine

In the crystal structure of the title compound, $C_{14}H_{12}N_4O_5$, molecules are connected *via* weak intermolecular N-H···O and C-H···O hydrogen bonds, forming a three-dimensional network.

Received 20 January 2006 Accepted 24 January 2006

Comment

Metal complexes based on Schiff bases have attracted much attention because they can be utilized as model compounds of active centres in various proteins and enzymes (Kahwa *et al.*, 1986; Santos *et al.*, 2001). As part of an investigation of the coordination properties of Shiff bases functioning as ligands (Yu *et al.*, 2005; Deng *et al.*, 2005; Jing, Fan *et al.*, 2005*a,b*; Jing, Wang *et al.*, 2005), we report the synthesis and structure of the title compound, (I).

The molecular structure of (I) is approximately planar (Fig. 1); the central chromophore (C1–C6/N1–N4) and the 4methoxybenzaldehyde group (C7–C13/O5) are planar with r.m.s. deviations of 0.0288 (2) and 0.0051 (5) Å, respectively; the dihedral angle between these two planes is 1.29 (7)°. An intramolecular N–H···O hydrogen bond stabilizes the molecular structure, while intermolecular N–H···O and C– H···O hydrogen bonds stabilize the crystal structure (Table 2 and Fig. 2).

Experimental

An anhydrous ethanol solution (50 ml) of 4-methoxybenzaldehyde (1.36 g, 10 mmol) was added to an anhydrous ethanol solution

All rights reserved

© 2006 International Union of Crystallography

Figure 2

The packing of (I), viewed down the a axis, showing intermolecular hydrogen bonds (dashed lines).

(50 ml) of (2,4-dinitrophenyl)hydrazine (2.03 g, 10 mmol) and the mixture was stirred at 330 K for 6 h under N2, whereupon a red solution appeared. The solvent was removed and the residue was recrystallized from N,N-dimethylformamide. The product was isolated and then dried in vacuo to give the title compound in 82% yield. Red single crystals suitable for X-ray analysis were obtained by slow evaporation of an N,N-dimethylformamide solution of (I).

Crystal data

$C_{14}H_{12}N_4O_5$	$D_{\rm x} = 1.492 {\rm Mg} {\rm m}^{-3}$
$M_r = 316.28$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 2340
a = 6.189 (2) Å	reflections
b = 8.581 (3) Å	$\theta = 3.1-26.1^{\circ}$
c = 26.669 (11) Å	$\mu = 0.12 \text{ mm}^{-1}$
$\beta = 96.392 \ (5)^{\circ}$	T = 294 (2) K
$V = 1407.5 (9) \text{ Å}^3$	Block, red
Z = 4	$0.24 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.963, T_{\max} = 0.979$ 7349 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.096$ S = 1.032481 reflections 213 parameters H atoms treated by a mixture of

independent and constrained refinement

2481 independent reflections 1914 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.017$ $\theta_{\rm max} = 25.0^{\circ}$ $h = -7 \rightarrow 6$ $k = -10 \rightarrow 9$ $l = -31 \rightarrow 31$

 $w = 1/[\sigma^2(F_0^2) + (0.0536P)^2]$ + 0.1714P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.11 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

O5-C11	1.3614 (15)	N3-C6	1.3457 (18)
N1-C3	1.4500 (19)	N3-N4	1.3782 (15)
N2-C5	1.4462 (18)	N4-C7	1.2746 (18)
C6-N3-N4	119.99 (12)	C7-N4-N3	114.37 (12)

Table 2

Hydrogen-bond	geometry	(Å,	°)
1	0	× /	

1 984 (17)	2 (190 (17)	
1.201(17)) 2.0189 (17)	129.0 (14)
2.620 (18)	3.4419 (19)	158.2 (14)
2.59	3.375 (2)	143
2.56	3.188 (3)	123
	2.620 (18) 2.59 2.56	$\begin{array}{cccccccc} 2.620 & (18) & 3.4419 & (19) \\ 2.59 & 3.375 & (2) \\ 2.56 & 3.188 & (3) \end{array}$

The H atom attached to N atom was located in a difference Fourier map and refined freely. C-bound H atoms were included in calculated positions and refined using a riding model approximation, with C-H = 0.93 Å (aromatic) and 0.96 Å (methyl), and with $U_{iso}(H)$ = $1.2U_{eq}(C)$ and $1.5U_{eq}(C)$, respectively.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

- Bruker (1997). SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SMART (version 5.0) and SAINT (Version 4.0). Bruker AXS Inc., Madison, Wisconsin, USA.
- Deng, Q.-L., Yu, M., Chen, X., Diao, C.-H., Jing, Z.-L. & Fan, Z. (2005). Acta Cryst. E61, o2545-o2546.
- Jing, Z.-L., Fan, Z., Yu, M., Chen, X. & Deng, Q.-L. (2005a). Acta Cryst. E61, 03208-03209
- Jing, Z.-L., Fan, Z., Yu, M., Chen, X. & Deng, Q.-L. (2005b). Acta Cryst. E61, 03495-03496.
- Jing, Z.-L., Wang, X.-Y., Chen, X. & Deng, Q.-L. (2005). Acta Cryst. E61, 04316-04317.
- Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.
- Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. 838-844.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 & SHELXL97. University of Göttingen, Germany.
- Yu, M., Chen, X. & Jing, Z.-L. (2005). Acta Cryst. E61, 01345-01346.